The Project Gutenberg EBook of A New Genus of Pennsylvania Fish
(Crossoperygii, Coelacanthiformes) from Kansas, by Joan Echols
This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org
Title: A New Genus of Pennsylvania Fish (Crossoperygii, Coelacanthiformes) from Kansas
Author: Joan Echols
Release Date: August 28, 2010 [EBook #33560]
Language: English
Character set encoding: ISO-8859-1
*** START OF THIS PROJECT GUTENBERG EBOOK NEW GENUS OF PENNSYLVANIA FISH ***
Produced by Chris Curnow, Joseph Cooper, Josephine Paolucci
and the Online Distributed Proofreading Team at
https://www.pgdp.net.
UNIVERSITY OF KANSAS PUBLICATIONS
MUSEUM OF NATURAL HISTORY
Volume 12, No. 10, pp. 475-501, 7 figs.
October 25, 1963
A New Genus of Pennsylvanian Fish (Crossopterygii, Coelacanthiformes)
from Kansas
BY
JOAN ECHOLS
UNIVERSITY OF KANSAS
LAWRENCE
1963
UNIVERSITY OF KANSAS PUBLICATIONS, MUSEUM OF NATURAL HISTORY
Editors: E. Raymond Hall, Chairman, Henry S. Fitch,
Theodore H. Eaton, Jr.
~Volume 12, No. 10, pp. 475-501, 7 figs.~
~Published October 25, 1963~
UNIVERSITY OF KANSAS
Lawrence, Kansas
PRINTED BY
JEAN M. NEIBARGER, STATE PRINTER
TOPEKA, KANSAS
1963
[Transcriber's Note: Words surrounded by tildes, like ~this~ signifies
words in bold. Words surrounded by underscores, like _this_, signifies
words in italics.]
A New Genus of Pennsylvanian Fish (Crossopterygii, Coelacanthiformes)
from Kansas
BY
JOAN ECHOLS
INTRODUCTION
In 1931 and 1932, H. H. Lane, C. W. Hibbard and W. K. McNown collected
the specimens that Hibbard (1933) described and made the basis of two
new species. These were from the Rock Lake shale member of the Stanton
formation, six miles northwest of Garnett, Anderson County, Kansas. In
1954, from a locality (KAn-1/D, see page 480) approximately one fourth
mile southwest of the first locality, specimens were quarried by F. E.
Peabody, R. W. Wilson and R. Weeks. In 1955 R. R. Camp collected
additional blocks of Rock Lake shale from this second locality. Study of
all of the materials from the above mentioned localities reveals the
existence of an hitherto unrecognized genus of coelacanth. It is named
and described below.
I wish to thank Prof. Theodore H. Eaton, Jr., for suggesting the project
and for much helpful advice. I am indebted to Dr. E. I. White of the
British Museum (Natural History) for furnishing a cast of the
endocranium of _Rhabdoderma elegans_ (Newberry) for comparison, and to
Drs. Donald Baird (Princeton University), Bobb Schaeffer (American
Museum of Natural History) and R. H. Denison (Chicago Natural History
Museum) for loans and exchanges of specimens for comparison. I am
grateful to Dr. Bobb Schaeffer for advice on the manuscript. Mr. Merton
C. Bowman assisted with the illustrations. The study here reported on
was made while I was a Research Assistant supported by National Science
Foundation Grant G-14013.
SYSTEMATIC DESCRIPTIONS
Subclass CROSSOPTERYGII
Superorder COELACANTHI
Order Coelacanthiformes
Suborder DIPLOCERCIDOIDEI
Family DIPLOCERCIDAE
Subfamily ~Rhabdodermatinae~, new subfamily
_Type genus._--_Rhabdoderma Reis_, 1888, Paleontographica,
vol. 35, p. 71.
_Referred genus._--_Synaptotylus_ new, described below.
_Horizon._--Carboniferous.
_Diagnosis._--Sphenethmoid region partly ossified, and
consisting of basisphenoid, parasphenoid, and ethmoid
ossifications; paired basipterygoid process and paired
antotic process on basisphenoid; parasphenoid of normal
size, and closely associated with, or fused to,
basisphenoid; ethmoids paired in _Rhabdoderma_ (unknown in
_Synaptotylus_).
_Discussion._--Because of the great differences in endocranial structure
between the Devonian and Pennsylvanian coelacanths, they are here placed
in new subfamilies. The two proposed subfamilies of the family
Diplocercidae are the Diplocercinae and the Rhabdodermatinae. The
Diplocercinae include those coelacanths having two large unpaired bones
in the endocranium (at present this includes _Diplocercides_ Stensiö,
_Nesides_ Stensiö and _Euporosteus_ Jaekel). The subfamily
Rhabdodermatinae is composed of coelacanths having reduced endocranial
ossification, as described in detail above, and now including
_Rhabdoderma_ Reis and _Synaptotylus_ n. g.
Members of this subfamily differ from those of the subfamily
Diplocercinae in having several paired and unpaired elements in the
sphenethmoid region of the endocranium, instead of only one larger
ossification. They differ from those of the suborder Coelacanthoidei in
the retention of basipterygoid processes.
_Synaptotylus_ is more closely related to _Rhabdoderma_ than to the
Diplocercines because the anterior portion of the endocranium contains
only a basisphenoid, parasphenoid, and probably ethmoids. The
sphenethmoid region was certainly not a large, unpaired unit as in the
Diplocercines. Probably the posterior part, the otico-occipital region
(not known in _Synaptotylus_), was much more nearly like that of
_Rhabdoderma_, which consisted of unpaired basioccipital and
supraoccipital, and paired prootics, exoccipitals, and anterior and
posterior occipital ossifications (Moy-Thomas, 1937: figs. 3, 4).
Moy-Thomas (1937:389) points out that in _Rhabdoderma_ the occipital
region is "considerably more ossified" than in any coelacanths other
than the Devonian forms. Berg (1940:390) thought that the Carboniferous
coelacanths should be placed in a separate family because they did not
have two large, unpaired bones in the endocranium. _Rhabdoderma_ and
_Synaptotylus_ represent another stage in evolution of the endocranium
in coelacanths, and, if classification is to be based on endocranial
structure, then this stage (represented by the two genera) may later be
given family rank as Berg suggested. Because _Rhabdoderma_ and
_Synaptotylus_ have only part of the sphenethmoid region ossified and
because they retain basipterygoid processes, they are considered to be
related and are included in the subfamily Rhabdodermatinae.
~Synaptotylus~, new genus
_Type species._--_Synaptotylus newelli_ (Hibbard).
_Horizon._--Rock Lake shale member, Stanton formation,
Lansing group, Missouri series, Upper Pennsylvanian.
_Diagnosis._--Late Pennsylvanian fishes of small size, having the
following combination of characters: on basisphenoid, knoblike antotic
processes connected by a low ridge to basipterygoid processes; entire
ventral surface of parasphenoid toothed; anterior margin of parasphenoid
notched and no evidence of hypophyseal opening. Dermal bones of skull
smooth or with low, rounded tubercles and striae; fronto-ethmoid shield
incompletely known but having one pair of large rectangular frontals
with posterolaterally slanting anterior margins; intertemporals large,
the lateral margins curving laterally; postorbital triangular, apex
downward; subopercular somewhat triangular; squamosal carrying sensory
canal that curves down posteriorly and extends onto a ventral
projection; opercular generally triangular; supratemporals elongate,
curving to fit lateral margin of intertemporals; circumorbital plates
lightly ossified. Palatoquadrate complex consisting of endopterygoid and
ectopterygoid (both toothed on medial surface), quadrate, and
metapterygoid, the latter smooth and having widened border for
articulation on anterodorsal margin. Pectoral girdle consisting of
cleithrum and clavicle (supracleithrum not seen); small projection on
medial surface of posterior portion of cleithrum; horizontal medial
process on clavicle. Pelvic plate bearing three anteriorly diverging
apophyses, and one denticulate ventromedian process for articulation to
opposite plate. Lepidotrichia jointed distally, but not tuberculated.
Scales oval, having posteriorly converging ridges on posterior exposed
parts.
The name refers to the most distinctive character of the genus, the
connected antotic and basipterygoid processes on the basisphenoid, and
is derived from Greek, _synaptos_--joined, _tylos_ (masc.)--knob,
projection.
_Synaptotylus_ is excluded from the advanced suborder Coelacanthoidei by
the retention of basipterygoid processes on the basisphenoid.
_Synaptotylus_ differs from _Rhabdoderma_ in several characters of the
basisphenoid, the most important being: knoblike antotic processes
(those of _Rhabdoderma_ are wider, more flattened and more dorsal in
position); small, lateral basipterygoid processes (in _Rhabdoderma_
these are larger and farther ventral in position).
~Synaptotylus newelli~ (Hibbard)
_Coelacanthus newelli_ Hibbard, 1933, Univ. Kansas Sci.
Bull., 21:280, pl. 27, figs. 2, 3.
_Coelacanthus arcuatus_ Hibbard, 1933, Univ. Kansas Sci.
Bull., 21:282, pl. 26, fig. 8; pl. 27, fig. 1.
_Rhabdoderma elegans_ Moy-Thomas, 1937 (in part), Proc.
Zool. Soc. London, 107(ser. B, pt. 3):399.
_Type._--K. U. no. 786F.
_Diagnosis._--Same as for the genus.
_Horizon._--Rock Lake shale member, Stanton formation,
Lansing group, Missouri series, Upper Pennsylvanian.
_Localities._--The specimens studied by Hibbard (K. U. nos.
786F, 787F, 788) and no. 11457 were taken from the Bradford
Chandler farm, from the original quarry in SW-1/4, SE-1/4,
sec. 32, T.19S, R.19E. The remainder were collected from
University of Kansas Museum of Natural History locality
KAn-1/D, a quarry in sec. 5, T.19S, R.19E. Both of these are
approximately six miles northwest of Garnett, Anderson
County, Kansas.
_Referred specimens._--K. U. nos. 786F, 787F, 788, 9939,
11424, 11425, 11426, 11427, 11428, 11429, 11430, 11431,
11432, 11433, 11434, 11449, 11450, 11451, 11452, 11453,
11454, 11455, 11457.
_Preservation._--Preservation of many of the specimens is
good, few are weathered, but most of the remains are
fragmentary and dissociated. One specimen (the type, no.
786F) and half of another were nearly complete. Specimens
are found scattered throughout the Rock Lake shale (see p.
498).
_Morphology._--Terminology used for bones of the skull is
that of Moy-Thomas (1937) and Schaeffer (1952).
_Endocranium and parasphenoid_
[Illustration: FIG. 1. _Synaptotylus newelli_ (Hibbard). Restoration of
the basisphenoid, based on K. U. no. 9939, × 5. A, lateral view, B,
posterior view, C, ventral view.]
The basisphenoid (see fig. 1) has been observed in only one specimen (K.
U. no. 9939) in posterodorsal and ventral views. The basisphenoid,
although somewhat crushed, appears to be fused to the parasphenoid. Both
antotic and basipterygoid processes are present, and are connected by a
low, rounded ridge. The antotic processes are large, bulbar projections.
These processes in _Rhabdoderma_ are wider and more flattened
(Moy-Thomas, 1937:figs. 3, 4). The antotic processes are at mid-point on
the lateral surface, not dorsal as in _Rhabdoderma_, and both the
processes and the ridge are directed anteroventrally. The basipterygoid
processes are smaller, somewhat vertically elongated projections,
situated at the end of the low connecting ridge extending
anteroventrally from the antotic processes, and are not basal as are
those of _Rhabdoderma_. The sphenoid condyles, seen in posterior view,
issue from the dorsal margin of the notochordal socket. The margins of
the socket are rounded, and slope down evenly to the center. A slight
depression situated between and dorsal to the sphenoid condyles is
supposedly for the attachment of the intercranial ligament (Schaeffer
and Gregory, 1961:fig. 1). The alisphenoids extend upward,
anterodorsally from the region above the sphenoid condyles, and may
connect to ridges on the ventral surface of the frontals. The lateral
laminae are not preserved, and their extent is unknown.
In viewing the changes in the endocranium of Carboniferous and Permian
coelacanths, it would be well to consider the mechanical relationship of
the loss of the basipterygoid processes to the effect on swallowing
prey. Evidently many of the coelacanths, _Latimeria_ for example, are
predators (Smith, 1939:104); to such fishes a more efficient catching
and swallowing mechanism would be an adaptive improvement. Stensiö
(1932:fig. 14) presents a cross section of the ethmosphenoid moiety of
the endocranium of _Diplocercides kayseri_ (von Koenen) showing the
metapterygoid of the palatoquadrate loosely articulated to both the
antotic and basipterygoid processes. According to Tchernavin (1948:137)
and Schaeffer and Rosen (1961:190) the swallowing of large prey depends
on the ability of the fish to expand its oral cavity by allowing the
posteroventral portion of the palatoquadrate and the posterior end of
the mandible to swing outward. Where the palatoquadrate articulates with
the basisphenoid at the antotic and basipterygoid processes, as in the
Devonian coelacanths, it can not swing so far laterally as where it
articulates with only the dorsal, antotic process. Perhaps the loss of
the basipterygoid articulation reflects the development of a more
efficient mechanism for swallowing prey in these fishes. Schaeffer and
Rosen (1961:191, 193) show that in the evolution of the actinopterygians
several changes improved the feeding mechanism: some of these changes
are: (1) freeing of the maxilla from the cheek, giving a larger chamber
for the action of the adductor mandibulae; (2) development of a coronoid
process on the mandible; and (3) increase in torque around the jaw
articulation. In coelacanths, at least some comparable changes occurred,
such as: (1) loss of the maxillary, thus increasing the size of the
adductor chamber; (2) development of the coronoid bone, affording a
greater area for muscle attachment; (3) development of an arched dorsal
margin on the angular; (4) modification of the palatoquadrate complex,
with resultant loss of the basipterygoid processes. In _Synaptotylus_
the basipterygoid processes are small, not basally located, and perhaps
not functional. A more efficient feeding mechanism developed rapidly
during the Carboniferous and has remained almost unaltered.
[Illustration: FIG. 2. _Synaptotylus newelli_ (Hibbard). Restoration of
the parasphenoid, based on K. U. nos. 9939, 11451, × 5. A, ventral view,
B, dorsal view and cross sections.]
The parasphenoid (see fig. 2) is a shovel-shaped bone having a wide
anterior portion and a narrower posterior portion of nearly uniform
width. Most of the ventral surface is covered with minute granular
teeth. The anterior margin is flared and curved posteromedially from the
lateral margin to a median triangular projection. The lateral margins
curve smoothly from the greatest anterior width to the narrow central
portion, where the margins become somewhat thickened and turned
dorsally. Posterior to this the lateral margins are probably nearly
straight. The external surface of the anterior section is nearly flat
and has a central depressed area the sides of which slope evenly to the
center. The internal surface is smooth and centrally convex. Because of
the fragmentary nature of all four observed specimens, total length was
not measured but is estimated to be 15 to 20 mm. The opening of the
hypophyseal canal was not present, possibly because of crushing.
Ethmoidal ossifications were not preserved in any of the specimens
studied. The parasphenoid differs from that of _Rhabdoderma elegans_
(Newberry) in being more flared and widened anteriorly and more concave
centrally.
_Dermal bones of the skull_
Various portions of the cranial roof are preserved in several specimens
(see fig. 3). For comparisons with _Rhabdoderma elegans_, see Moy-Thomas
(1937:fig. 1).
The premaxillaries and rostral elements are not preserved in any of the
specimens. Only one pair of relatively large frontals have been
observed; they are 5.5 to 9.0 mm. long and 2.0 to 3.5 mm. wide. These
are nearly flat bones, with the greatest width posteriorly 0.1 to 1.0
mm. wider than the anterior portion. The midline suture is straight, the
lateral margins are nearly straight, the anterior margin slopes evenly
posterolaterally, and the posterior margin is slightly convex to
straight. The anterior margin in _R. elegans_ is essentially straight.
Ornamentation consists of sparse, unevenly spaced, coarse tubercles or
short striae. In one specimen both bones have small clusters of
tubercles near the lateral margins and about 2.0 mm. from the posterior
margin. None of these bones has alisphenoids or ridges on the ventral
surface, as Stensiö (1921:65, 97) described for _Wimania_ and _Axelia_.
[Illustration: FIG. 3. _Synaptotylus newelli_ (Hibbard). Diagram of the
dermal bones of the skull, in lateral view, based on K. U. nos. 788 and
11432. × 2-1/2 approximately.]
Only six supraorbitals have been preserved (see fig. 3). These are
nearly square, flat, thin bones lying nearly in place adjacent to a
frontal on K. U. no. 788. The smallest is anterior; the margins of all
are nearly straight. The bones are unornamented. Each bears a pore of
the supraorbital line just below the midline. The supraorbitals of _R.
elegans_ have a triangular outline and do not bear pores.
Intertemporals (fig. 3) on several specimens vary from approximately 9.0
to 15.0 mm. in length, 2.0 to 2.7 mm. in anterior width, and increase to
4.5 to 8.0 mm. in maximum posterior width. The midline suture is
straight, the anterior margin is concave and the lateral margin proceeds
laterally in a concave curve to the widest portion. In _R. elegans_ only
the anterior half of the corresponding margin is concave. The posterior
margin is slightly rounded and slopes anteriorly toward the lateral
margin. Ornamentation is usually of randomly oriented tubercles and
striae, although striae are more common in the posterior third and may
be longitudinal, whereas tubercles occur mainly on the anterior section.
No evidence of sensory pores, as seen on the intertemporal of _R.
elegans_, has been found.
The supratemporals were observed on only one specimen (K. U. no. 788),
(fig. 3). Sutures were difficult to distinguish but the medial margin is
presumed to curve to fit and to articulate with the lateral margins of
the intertemporals. Lateral margins are smoothly curved but the anterior
and posterior margins were broken off. There appears to be no
ornamentation on this bone. The supratemporals are much more elongated
and curving than those in _R. elegans_.
The cheek region is nearly complete in one specimen (K. U. no. 788), and
scattered parts occur in a few others (see fig. 3). The lacrimojugal of
no. 788 is elongate, with both ends curving dorsally. It differs from
the lacrimojugal in _R. elegans_, in which the anterior end extends
anteriorly and is not curved dorsally. The posterior and anterior
margins are not preserved; the greatest height appears to be posterior.
Pores of the suborbital portion of the infraorbital sensory canal are
seen on the dorsal surface of the bone. In _R. elegans_ the pores are on
the lateral surface. A section of the lacrimojugal on specimen no.
11425, broken at both ends, shows a thin layer of bone perforated by the
pores and covering a groove for the canal within the dorsal margin of
the bone. Both specimens are unornamented.
A nearly complete postorbital (fig. 3) on specimen no. 788 is nearly
triangular, with the apex ventral. The concave anterior margin bears
pores of the postorbital part of the infraorbital line. Ornamentation
consists of widely spaced, coarse tubercles.
Part of one squamosal is preserved. It is somewhat triangular and its
apex is ventral. This bone is associated with the postorbital,
subopercular and lacrimojugal on no. 788. The preopercular sensory line
passes down the curving ventral margin of this bone, and extends
ventrally onto a narrow projection. A low ridge, nearly vertical, passes
dorsally from about mid-point of the canal to the dorsal portion. The
anterior margin is nearly straight, the ventral margin is concave, and
the dorsal margin is convex dorsally but may be incomplete. Perhaps the
squamosal and preopercular are fused. The surface appears smooth; the
view may be of the medial side. The squamosal of _R. elegans_ is nearly
triangular and notably different from that of _Synaptotylus newelli_.
The subopercular (fig. 3) shows closely spaced tubercles on the lateral
surface. The bone is an elongated, irregular triangle with the apex
pointing anterodorsally. The margins are incomplete, except for the
concave, curving anterior margin.
Numerous operculars (fig. 3) occur in the suite of specimens, both
isolated and nearly in place. Each is subtriangular; the apex of the
triangle is ventral. A slight convexity projects from the anterodorsal
border. The posterior margin is broadly but shallowly indented.
Otherwise the margins are smooth. Maximum height ranges from 8.0 to 11.0
mm., and maximum width from 8.0 to 13.0 mm. Ornamentation varies from a
few widely spaced, randomly oriented tubercles to closely spaced
tubercles merging posteriorly into striae. On some specimens these are
parallel to the dorsal border, and oblique in the central portion. On
the posterior margins of several operculars the striae break up into
tubercles. A few operculars have closely spaced tubercles over much of
the surface. The internal surface is smooth.
_Visceral skeleton_
The palatoquadrate complex, best seen on K. U. no. 9939 (fig. 4),
consists of endopterygoid, ectopterygoid, metapterygoid and quadrate. No
trace of epipterygoids, dermopalatines or autopalatines, such as
Moy-Thomas (1937:392, fig. 5) described for _Rhabdoderma_, has been
observed.
The endopterygoid has a long, ventral, anteriorly-directed process, and
an anterodorsal process that meets the metapterygoid in forming the
processus ascendens. The suture between the endopterygoid and
metapterygoid, seen in lateral view, is distinct in some specimens and
has an associated ridge; these bones appear to be fused in others,
without regard to size. This suture curves dorsally from a point
anterior to the quadrate and passes anterodorsally to the extremity of
the processus ascendens. The suture is visible on the medial side only
near the processus ascendens, for it is covered by a dorsal, toothed
extension of the endopterygoid. The endopterygoid has a smooth lateral
surface; the medial surface is covered with tiny granular teeth, in
characteristic "line and dot" arrangement. The teeth extend onto the
ventral surface of the ventral process.
[Illustration: FIG. 4. _Synaptotylus newelli_ (Hibbard). Restoration of
the palatoquadrate complex, based on K. U. no. 9939, × 5. A, medial
view, B, lateral view.]
Two long, narrow, splintlike bones covered on one surface with granular
teeth are interpreted as ectopterygoids. These are 13.0 and 16.0 mm.
long and each is 1.5 mm. wide. Orientation of these is unknown, but they
probably fitted against the ventral surface of the ventral process of
the endopterygoid (Moy-Thomas, 1937:fig. 5).
[Illustration: FIG. 5. _Synaptotylus newelli_ (Hibbard). A, ceratohyal,
lateral (?) view, based on K. U. nos. 11429 and 11457, × 5. B, urohyal,
based on K. U. no. 11457, × 5.]
The metapterygoid has a smooth surface in both views. The dorsal edge
has a thickened, flared margin that presumably articulated with the
antotic process of the basisphenoid. No articular surface for the
basipterygoid process has been observed.
The quadrate is distinct and closely applied to the posteroventral
margin of the complex. In medial view the margin is nearly straight and
continues to the ventral edge. The ventral surface is thickened and
forms a rounded, knoblike articular surface. In lateral view the surface
is smooth; the anterior margin is irregular (or perhaps broken on all
specimens), and proceeds in an irregular convex curve from the posterior
to the ventral margin.
The general shape of the palatoquadrate complex is most nearly like that
of _Rhabdoderma elegans_ (Moy-Thomas, 1937:fig. 5). The orientation of
the complex in the living fish was probably oblique, with the processus
ascendens nearly vertical, the quadrate oblique, and the ventral process
of the endopterygoid extending dorsoanteriorly and articulating with the
parasphenoid.
Of the hyoid arch only the ceratohyals (see fig. 5A) are preserved in
several specimens. These are long, curved bones with a posteroventral
process and widened, flaring posterior margin. The medial (?) surface is
concave in one specimen. The lateral (?) surface displays a distinct
ridge on several specimens, arising on the dorsal surface opposite the
posteroventral process and extending diagonally to the anteroventral end
of the anterior limb. The impression of one other specimen appears to
have a central ridge because of greater dorsal thickness and narrowness.
Both surfaces are unornamented.
The urohyal (see fig. 5B) is an unornamented, Y-shaped bone, with the
stem of the Y pointing anteriorly. Orientation with respect to dorsal
and ventral surfaces is uncertain. In one view a faint ridge, also
Y-shaped, occurs on the expanded posterior portion, and the surface is
convex. The anterior process has a convex surface, sloping evenly off to
the lateral margin; the opposite side of the process has a concave
surface. The posterior portion has a slightly depressed area (see fig.
5B) at the junction of the "arms" of the Y.
The five branchial arches are represented by the ceratobranchials,
several of which are preserved on K. U. no. 11431. These are long bones
with anteriorly curving ventral ends. The medial surfaces are partly
covered with minute granular teeth; only the dorsal part is without
teeth. The dorsal articular surface is convex dorsally and rounded.
The mandible (fig. 3), the best specimens of which are K. U. nos. 788
and 11425, is seen only in lateral and ventral views, with only angular,
splenial and dentary visible.
The angular forms the main body of the mandible, and is similar to that
of _Spermatodus_. The dorsal margin of the angular is expanded in the
central region, with some variation. One specimen has an expanded
portion slightly anterior to that of the opposite angular. The articular
surface near the posterior end has not been observed; the posterior end
of the angular slopes off abruptly. The anterior sutures are seen in
only two specimens, K. U. nos. 788, 11425. The dentary meets the angular
in a long oblique suture; the dentary gradually tapers posterodorsally
and ends on the dorsal surface of the angular. The splenial fits into a
posteriorly directed, deep V-shaped notch on the ventral surface. The
lateroventral surface of the angular contains sensory pores of the
mandibular line. The ventral surface extends medially into a narrow
shelf, approximately 1.0 mm. wide, which extends the full length of the
bone; the external surface of this shelf is smooth and slightly concave
dorsally. Ornamentation of the angular consists of tubercles and
longitudinal or oblique striae, occurring mostly on the expanded
portion. The medial surface is not seen. Several broken specimens show
a central canal filled with a rod of calcite; in one of these the
sensory pores are also calcite-filled and appear to be connected to the
rod. Thus the pores originally opened into a central canal.
The dentary is an unornamented bone with the anterior half curving
medially; the greatest height is anterior. This bone in specimen K. U.
no. 11425 bears irregularly spaced, simple, recurved, conical teeth;
nine were counted, but there is space for many others. One other
specimen, no. 11429, seems to have tiny tubercles on the surface. The
dentary meets the splenial dorsally in a straight suture.
The splenial also curves medially, and as stated, meets the dentary in a
straight suture. Ornamentation on this bone was not observed. The
posterior margin is V-shaped and fits the notch in the angular. The
ventral surface bears three or more sensory pores of the mandibular
line.
The gular plates are oval. The medial margin is straight to slightly
curved, the lateral margin curved crescentically, the posterior end is
blunt, and the anterior end somewhat rounded. Ornamentation varies
greatly; some bones show only a few tubercles, whereas others exhibit an
almost concentric pattern of closely spaced striae. Typically there are
some tubercles in the anterior quarter or third of the total length;
these pass into longitudinally oriented striae in the posterior section.
A few have only randomly oriented, widely-spaced striae. The internal
surface is smooth.
The coronoid (K. U. no. 11428) is a triangular bone, with the apex
pointing dorsally. The lateral surface is smooth; no teeth were
observed. Moy-Thomas (1937:292, 293) mentions several tooth-bearing
coronoids in _Rhabdoderma_, but as yet these have not been seen in
_Synaptotylus_.
_Axial skeleton_
Only three specimens (K. U. nos. 786F, 787F, 11450) show parts of the
vertebral column, but isolated neural and haemal arches are numerous.
All are of the coelacanth type, having Y-shaped neural and haemal
arches, without centra. A total count of 38 was obtained, but this was
incomplete; the actual number was probably near 50. Counts of 10 and 16
haemal arches were obtained in two of the specimens. Total height of
neural arches ranges from 7.5 to 12.0 mm., and of haemal arches, from
9.0 to 12.0 mm. The shorter arches are anterior and the height increases
gradually to a maximum in the caudal region. Height of the spines varies
from 4.0 to 9.0 mm., or from twice the height of the arch in the
anterior to three times the height in the caudal region. Total width of
the base, measured in isolated specimens because lateral views in other
specimens prevented measuring width, ranges from 0.7 to 4.2 mm. The
short, broad arches having short spines occur at the anterior end of the
spinal column; the narrower arches having tall spines occur toward the
caudal end. Broken neural and haemal arches show a thin covering of bone
with a central, calcite-filled cavity, which in life may have been
filled with cartilage (Stensiö, 1932:58, fig. 20).
No ossified ribs have been observed, either isolated or in place.
For further description of the axial skeleton, see Hibbard (1933).
[Illustration: FIG. 6. _Synaptotylus newelli_ (Hibbard). Paired fin
girdles. A, pectoral girdle, lateral view, based on K. U. no. 11433, ×
3.5. B, pelvic girdle basal plate, medial (?) view, based on K. U. no.
788, × 8. Anterior is toward the left.]
_Girdles and paired fins_
A nearly complete pectoral girdle on specimen K. U. no. 11433 (see fig.
6A) has only a cleithrum and clavicle. No evidence of an extracleithrum
or supracleithrum has been observed, but the extracleithrum may be fused
to the cleithrum. The two bones form a boot-shaped unit, with the
anteroventral part turned medially to form a horizontal process which
meets the opposite half of the girdle. In lateral view the surface is
unornamented, and convex in the ventral half. The suture between the
cleithrum and clavicle begins on the expanded posterior portion, the
"boot-heel," at a point immediately below the greatest width on the
posterior margin, passes anteriorly, then turns sharply and parallels
the anterior margin. The shape of the cleithrum resembles that in
_Rhabdoderma_ and the internal surface is not ridged (see Moy-Thomas,
1937:fig. 9). The exact orientation in the fish is uncertain, but if the
median extension is really horizontal, then the posterior expansion is
directed caudally. The medial surface is concave, steepest near the
anterior margin, and then slopes outward evenly. In medial view one
specimen (K. U. no. 11426) shows a small, caudally directed projection
of bone, evidently for articulation of the fin-skeleton, at the widest
portion of the cleithrum. Sutures on several specimens were indistinct.
Broken specimens show sutural faces, but many nearly complete specimens
show little or no indication of sutures, without regard to size of the
girdles. The internal structure of the fin was not observed.
Numerous isolated basal plates of the pelvic girdle have revealed
details of structure but no information on the orientation. Presumably
the basal plates of _Synaptotylus_ had essentially the same orientation
as those of other coelacanths (Moy-Thomas, 1937:395). The most complete
basal plate is K. U. no. 788 (see fig. 6B). The three apophyses diverge
anteriorly; the horizontal one is best developed and the dorsal one is
least well developed. A median process (Schaeffer, 1952:49), denticulate
on several specimens, articulates with the corresponding process of the
opposite plate. The expanded part that articulates with the skeleton of
the fin extends caudally. The posterior expanded part is nearly square
in outline, resembling the dorsal, rectangular projection. One side
bears ridges leading to the extremities of the apophyses, and faint
crenulations on the median process. This may be the medial view. The
other view displays a smooth surface, usually without indication of the
ridges seen in the reverse view. These specimens differ somewhat from
the basal plates of _Rhabdoderma_ and appear to be intermediate between
_Rhabdoderma_ and _Coelacanthus_ (Moy-Thomas, 1937:fig. 10A, B). The
apophyses are not free as in _Rhabdoderma_ but webbed with bone almost
to their extremities, as in _Coelacanthus_.
The pelvic fin is seen in only two specimens (K. U. nos. 786F, 788).
That on no. 788 is lobate and has 25 lepidotrichia, jointed for
approximately the distal half, and 2.5 to 13.0 mm. in length. Total
length of the fin is 25.0 mm. There is no trace of the internal skeletal
structure or of the articulation to the basal plate in either specimen.
For a description of the fin on no. 786F, see Hibbard (1933:281).
_Unpaired fins_
A few isolated bones on K. U. no. 788 (fig. 7) are interpreted as basal
plates of the unpaired fins. For additional description of the unpaired
fins on the type, K. U. no. 786F, see Hibbard (1933).
Two of these bones are flat, smooth and oblong, bearing a diagonal ridge
that extends in the form of a projection. Orientation is completely
unknown. These may be basal plates of the anterior dorsal fin. The fin
on no. 786F that Hibbard (1933:281) interpreted as the posterior dorsal
fin is now thought to be the anterior dorsal fin.
[Illustration: FIG. 7. _Synaptotylus newelli_ (Hibbard). Basal plates of
unpaired fins. A, anterior dorsal fin, based on K. U. no. 788, × 10. B,
posterior dorsal fin, based on K. U. no. 788, × 12. C, anal fin, based
on K. U. no. 11450, × 5. Anterior is toward the left.]
One distinctive bone may represent the basal plate of the posterior
dorsal fin. This incomplete specimen shows two projecting curved
processes, bearing low but distinct ridges, which diverge, probably
anteriorly. The central portion is narrow. The two ridges continue onto
the posterior portion. This has been broken off, but shows that the
ridges diverge again. The surface is smooth, except for the ridges. As
before, orientation is uncertain. On no. 786F this fin was interpreted
by Hibbard (1933:281) as the anal fin.
Only part of one basal plate of the anal fin was preserved on K. U. no.
11450. That plate is oblong and has an expanded anterior end. The
narrow, constricted part bears two oblique ridges and a few tubercles.
The posterior part has nearly straight margins (represented by
impressions) and the posterior margin is oblique, sloping
anteroventrally. The flared anterior part has a smooth surface. This
basal plate is more nearly like those of _Coelacanthus_, according to
the descriptions given by Moy-Thomas (1937:399). The basal plate is
associated with seven apparently unjointed, incomplete lepidotrichia.
The anal fin on no. 786F is interpreted as the anterior dorsal fin
(Hibbard, 1933:281).
The caudal fins are preserved on K. U. nos. 786F, 787F, and have a total
of 24 lepidotrichia, 12 above and 12 below. These are jointed for the
distal half or two-thirds, and are up to 16.0 mm. in length. In specimen
no. 787F the supplementary caudal fin has at least seven lepidotrichia,
the longest of which is 11.0 mm. but incomplete. Anterior lepidotrichia
appear unjointed but the posterior ones are jointed for the distal
two-thirds (?) (these are broken off). The supplementary caudal fin is
approximately 1.5 mm. long and 8.0 mm. or more wide. The supplementary
caudal fin on K. U. no. 786F described by Hibbard (1933:281) could not
be observed; this part of the caudal fin is missing.
_Squamation_
In the suite of specimens isolated scales are numerous, but patches of
scales are rare. Only two specimens (K. U. nos. 786F, 787F) are complete
enough for scale counts, but preservation permits only partial counts.
In general the scales resemble those of _Rhabdoderma elegans_
(Newberry).
The scales are oval. The exposed posterior part of each bears
posteriorly converging ridges; the anterior part is widest and shows a
fine fibrillar structure. There are at least six scale-rows on either
side of the lateral line. Lateral line scales show no pores, and except
for slight irregularities in the orientation and length of the posterior
ridges, closely resemble the others. Central ridges on the lateral line
scales are shorter and tend to diverge from the center of the impression
of the canal. The lateral line canal shows only as the impression of a
continuous canal 0.7 mm. in diameter. Preservation is poorest in scales
along the line of the neural and haemal arches; therefore lateral line
scales are rarely preserved. Isolated scales are of two types: those on
which the posterior ridges converge sharply and form the gothic arch
configuration mentioned by Hibbard (1933:282), and those which do not.
Both types of scales can be present on one fish, as shown by specimen
no. 788. This is not apparent on nos. 786F and 787F; all of the scales
on these specimens appear to be much alike. Both Moy-Thomas (1937:385)
and Schaeffer (1952:51, 52) have remarked on the variation of the scales
on different parts of the same fish. Because the number of ridges and
amount of convergence of the ridges is not related to size of the scale,
it is concluded that these characters are not of taxonomic significance.
The strong resemblance of the scales of the Garnett specimens to those
of _Rhabdoderma elegans_ (Newberry) caused Moy-Thomas (1937:399) to add
Hibbard's two species to the synonymy of _R. elegans_. But at that time
only the scales could be adequately described. If the shape of the scale
and the number and pattern of ridges can vary with age, size and shape
of the scale, it follows that assignment of isolated scales to a species
should not be attempted. Assignment to genus should be made only with
caution.
_Discussion._--The relationship of _Synaptotylus_ to other coelacanths
is obscure at present. The knoblike antotic processes on the
basisphenoid are unlike those of any other known coelacanth. The
palatoquadrate complex is shaped like that of _Rhabdoderma elegans_ but
consists of fewer bones, probably because of fusion. The scales resemble
those of _Rhabdoderma_. With regard to general shape of fin girdles, the
pectoral girdle resembles that of _Eusthenopteron_ more than that of
_Rhabdoderma_, but the cleithrum is more nearly like the cleithrum of
_Rhabdoderma_. The pelvic girdle appears to be midway between those of
_Rhabdoderma_ and _Coelacanthus_ in general appearance. Regarding the
basal plates of the remaining fins, those of _Synaptotylus_ appear to
resemble basal plates of both _Rhabdoderma_ and _Coelacanthus_.
Considering the structure of the sphenethmoid region of the braincase,
_Synaptotylus_ is probably more closely related to _Rhabdoderma_ than
to other known coelacanth genera.
COMMENTS ON CLASSIFICATIONS
Classification of Carboniferous coelacanths has been difficult, partly
because the remains are commonly fragmentary, and significant changes in
anatomy did not become apparent in early studies. In general,
coelacanths have been remarkably stable in most characters, and it has
been difficult to divide the group into families. As Schaeffer (1952:56)
pointed out, definition of coelacanth genera and species has previously
been made on non-meristic characters, and the range of variation within
a species has received little attention. For example, Reis (1888:71)
established the genus _Rhabdoderma_, using the strong striation of the
scales, gular plates and posterior mandible as the main characters of
this Carboniferous genus. Moy-Thomas (1937:399-411) referred all
Carboniferous species to _Rhabdoderma_, redescribed the genus and
compared it to _Coelacanthus_, the Permian genus. He cited as specific
characters the ornamentation of the angulars, operculars and gular
plates (Moy-Thomas, 1935:39; 1937:385). Individual variation in some
species has rendered ornamentation a poor criterion. This variation is
apparent in _Synaptotylus newelli_ (Hibbard), some specimens having
little or no ornamentation; others having much more. The number of
ridges and pattern of ridges on the scales also varies. Schaeffer
(1952:56) has found this to be true of _Diplurus_ also. Moy-Thomas
(1935:40; 1937:385) realized that the type of scale is a poor criterion
for specific differentiation. In the search for features useful in
distinguishing genera of coelacanths, Schaeffer and Gregory (1961:3, 7)
found the structure of the basisphenoid to be distinctive in known
genera, and thought it had taxonomic significance at this level. Higher
categories should have as their basis characters that display
evolutionary sequences. A recent classification (Berg, 1940), followed
in this paper, reflects two evolutionary trends in endocranial structure
of coelacanths: reduction of endocranial ossification and loss of the
basipterygoid processes. Because there has been little change in other
structures in coelacanths, Berg's classification is the most useful.
Berg (1940:390) includes _Rhabdoderma_ in the suborder Diplocercidoidei
because of the presence of the basipterygoid processes, and in the
single family, Diplocercidae, but remarks that because of the reduced
amount of endocranial ossification the Carboniferous Diplocercidae
"probably constitute a distinct family." In considering this concept of
classification, the subfamilies Diplocercinae and Rhabdodermatinae of
the family Diplocercidae are proposed above. The subfamily
Rhabdodermatinae includes at present _Rhabdoderma_ and _Synaptotylus_.
The principal characters of the subfamily Rhabdodermatinae, named for
the first known genus, are the retention of the basipterygoid processes
and the reduction of endocranial ossification. Application of this
classification based upon endocranial structure would probably change
existing groupings of species of Carboniferous coelacanths; the entire
complex of Carboniferous genera should be redescribed and redefined. It
will be necessary to consider endocranial structure in any future
classification.
The greater part of the evolution previously mentioned appears to have
been accomplished during the Carboniferous; thereafter coelacanth
structure became stabilized. The trend progressed from Devonian
coelacanths which had two large unpaired bones in the endocranium, and
both antotic and basipterygoid processes on the basisphenoid, to
Carboniferous fishes in which ossification was reduced to a number of
paired and unpaired bones embedded in cartilage, and retaining both
processes, and then post-Carboniferous kinds with reduced ossification
and no basipterygoid processes. The Pennsylvanian was evidently the time
of greatest change for the coelacanths, and they have not changed
significantly since, in spite of the fact that since the Jurassic they
have shifted their environment from shallow, fresh water to moderate
depth in the sea (Schaeffer, 1953:fig. 1). The changes in endocranial
structure appear to be significant, and are perhaps related to higher
efficiency of the mouth parts in catching and swallowing prey (see p.
482).
ENVIRONMENT
The coelacanth fishes from the Rock Lake shale are part of the varied
fauna collected from Garnett. Peabody (1952:38) listed many elements of
the fauna and flora, and concluded that the deposits are of lagoonal
origin. In addition to numerous invertebrates (including microfossils)
and arthropods, a number of vertebrates other than coelacanths have been
found. These include at least one kind of shark, _Hesperoherpeton
garnettense_ Peabody, one or more kinds of undescribed labyrinthodonts
and the reptiles _Petrolacosaurus kansensis_ Lane, _Edaphosaurus ecordi_
Peabody, and _Clepsydrops_ (undescribed species). This is indeed a rich
vertebrate fauna, and the earliest known reptilian fauna. Much of the
rock contains plant remains. The flora that has been identified is
adapted to growing in a well-drained soil; although it contains some
elements considered characteristic of the Permian, it is of
Pennsylvanian age (Moore _et al._, 1936). Peabody (1952:38-39) discusses
the features of these lagoonal sediments. Much of the fauna and flora
suggests continental origin, but the many marine invertebrates at some
horizons indicate that at least some of the sediments were of marine
origin.
Little can be said about the actual environment of the living fishes of
the genus _Synaptotylus_. Remains of these fishes occur in layers
containing marine invertebrates, as well as in those containing plant
remains and vertebrate skeletal parts, and in those nearly completely
composed of dark carbonaceous material. Most of the remains are
fragmentary and consist of isolated bones, isolated scales, and
dissociated skulls; only one specimen and half of another are nearly
complete. Many published statements on _Rhabdoderma_, a related genus,
indicate both marine and fresh-water environments. Wehrli (1931:115)
regarded _Rhabdoderma elegans_ (Newberry) as a euryhaline species, and
cited its occurrence with both marine and fresh-water fossils. Aldinger
(1931:199) also found this to be the case with other species, and Fiege
(1951:17) quotes others as giving the same information. Keller
(1934:913) thought that few Carboniferous fishes were exclusively
marine, and stated that the majority of them became adapted to fresh
water during the late Carboniferous. Later, Schaeffer (1953:175) stated
that all Carboniferous and Permian coelacanths were fresh-water fishes,
and that many were from swamp deposits. If Keller is correct, then
members of the genus _Synaptotylus_ may have inhabited the lagoon, the
adjacent sea, or the streams draining into the lagoon. Perhaps these
fishes swam upstream, as modern salmon and tarpon do, although there is
no direct evidence for this. Possibly they lived in the lagoon at times
of scant rainfall and little runoff, when the salinity of lagoon water
approached normal marine values or the fishes may have lived in the
streams, and after death were washed into the lagoon. As numerous
remains of land plants and animals were washed in, perhaps this best
accounts for the presence of the fish in nearly all layers of the
deposits, not only the marine strata.
SUMMARY
A new genus of Pennsylvanian coelacanths, _Synaptotylus_, is described
and a previously named species, _Coelacanthus newelli_ Hibbard, 1933
(_C. arcuatus_ Hibbard, 1933, is a junior synonym), is referred to this
genus. All specimens of _Synaptotylus newelli_ (Hibbard) were collected
from the Rock Lake shale member of the Stanton formation, Lansing group,
Missouri series, six miles northwest of Garnett, Anderson County,
Kansas. _Synaptotylus_ is distinguished from all other coelacanths by a
basisphenoid having large, knoblike antotic processes each connected by
a low ridge to a small basipterygoid process. _Synaptotylus_ is most
closely related to _Rhabdoderma_, but is intermediate between
_Rhabdoderma_ and _Coelacanthus_ in shape of the fin girdles and basal
plates. Two new subfamilies, Diplocercinae and Rhabdodermatinae, of the
family Diplocercidae, are proposed. _Synaptotylus_ and _Rhabdoderma_ are
included in the subfamily Rhabdodermatinae, because both exhibit reduced
ossification in the endocranium and retain basipterygoid processes.
Loss of the basipterygoid processes in post-Carboniferous coelacanths
may reflect the development of a more efficient feeding mechanism, by
allowing the palatoquadrate complex and mandible to swing farther
laterally and expand the oral cavity.
_Synaptotylus newelli_ (Hibbard) may have occupied either the sea or
fresh water; these fishes occur in lagoonal deposits with reptiles and
amphibians, arthropods, marine invertebrates and remains of land plants.
Because scale patterns on _Synaptotylus_ and _Rhabdoderma_ are so nearly
similar and vary with size of the scale and its location on the fish, it
is recommended that isolated scales not be assigned to a species, and to
a genus only with great caution.
LITERATURE CITED
ALDINGER, H.
1931. Ueber karbonische Fische aus Westfälen. Paleont. Zeit.,
13:186-201.
BERG, L. S.
1940. Classification of fishes, both Recent and fossil. Moscow and
Leningrad, 1940 (J. W. Edwards, Ann Arbor, Michigan, 1947, offset
reproduction, pp. 1-345, 197 figs., plus English translation of text,
pp. 346-517, 1947.)
FIEGE, K.
1951. Eine Fisch-Schwimmspur aus dem Culm bei Waldeck. Neues Jahrb.
Geol. and Paläont. Jahrgang 1951:9-31.
HIBBARD, C. W.
1933. Two new species of _Coelacanthus_ from the middle Pennsylvanian of
Anderson County, Kansas. Kansas Univ. Sci. Bull., 21:279-287.
KELLER, G.
1934. Fischreste aus dem oberkarbon des Ruhrgebiets. Gluckauf,
70:913-917.
MOORE, R. C., ELIAS, M. K., and NEWELL, N. D.
1936. A "Permian" flora from the Pennsylvanian rocks of Kansas. Jour.
Geol., 44:1-31.
MOY-THOMAS, J. A.
1935. A synopsis of the coelacanth fishes of the Yorkshire Coal
Measures. Ann. Mag. Nat. Hist., 15 (ser. 10): 37-46.
1937. The Carboniferous coelacanth fishes of Great Britain and Ireland.
Proc. Zool. Soc. London, 107 (B): 383-415.
PEABODY, F. E.
1952. _Petrolacosaurus kansensis_ Lane, a Pennsylvanian reptile from
Kansas. Kansas Univ. Paleont. Contrib., 1:1-41.
REIS, O. M.
1888. Die Coelacanthinen mit besonderen Berücksichtigung der im Weissen
Jura Bayerns verkommenden Arten. Palaeontographica, 35:1-96.
SCHAEFFER, B.
1952. The Triassic coelacanth fish _Diplurus_, with observations on the
evolution of the Coelacanthini. Bull. Amer. Mus. Nat. Hist., 99:art. 2,
29-78.
1953. _Latimeria_ and the history of the coelacanth fishes. New York
Acad. Sci. Trans., (2) 15:170-178.
SCHAEFFER, B., and GREGORY, J. T.
1961. Coelacanth fishes from the continental Triassic of the western
United States. Amer. Mus. Novitates, 2036:1-18.
SCHAEFFER, B., and ROSEN, D. E.
1961. Major adaptive levels in the evolution of the actinopterygian
feeding mechanism. Am. Zool., 1:187-204.
SMITH, J. L. B.
1939. A living coelacanthid fish from South Africa. Trans. Roy. Soc.
South Africa, 28:1-106.
STENSIÖ, E. A.
1921. Triassic fishes from Spitzbergen. Part I. Vienna, Adolf
Holzhausen: 1-307.
1932. Triassic fishes from East Greenland. Meddel. om Grønland,
38:1-305.
TCHERNAVIN, V. V.
1948. On the mechanical working of the head of bony fishes. Proc. Zool.
Soc. London, 118:129-143.
WEHRLI, H.
1931. Die Fauna der Westfälischen Stufen A und B der Bochumer Mulde
zwischen Dortmund und Kamen (Westfälen). Palaeontographica, 74:93-134.
_Transmitted March 29, 1962._
End of the Project Gutenberg EBook of A New Genus of Pennsylvania Fish
(Crossoperygii, Coelacanthiformes) from Kansas, by Joan Echols
*** END OF THIS PROJECT GUTENBERG EBOOK NEW GENUS OF PENNSYLVANIA FISH ***
***** This file should be named 33560-8.txt or 33560-8.zip *****
This and all associated files of various formats will be found in:
https://www.gutenberg.org/3/3/5/6/33560/
Produced by Chris Curnow, Joseph Cooper, Josephine Paolucci
and the Online Distributed Proofreading Team at
https://www.pgdp.net.
Updated editions will replace the previous one--the old editions
will be renamed.
Creating the works from public domain print editions means that no
one owns a United States copyright in these works, so the Foundation
(and you!) can copy and distribute it in the United States without
permission and without paying copyright royalties. Special rules,
set forth in the General Terms of Use part of this license, apply to
copying and distributing Project Gutenberg-tm electronic works to
protect the PROJECT GUTENBERG-tm concept and trademark. Project
Gutenberg is a registered trademark, and may not be used if you
charge for the eBooks, unless you receive specific permission. If you
do not charge anything for copies of this eBook, complying with the
rules is very easy. You may use this eBook for nearly any purpose
such as creation of derivative works, reports, performances and
research. They may be modified and printed and given away--you may do
practically ANYTHING with public domain eBooks. Redistribution is
subject to the trademark license, especially commercial
redistribution.
*** START: FULL LICENSE ***
THE FULL PROJECT GUTENBERG LICENSE
PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK
To protect the Project Gutenberg-tm mission of promoting the free
distribution of electronic works, by using or distributing this work
(or any other work associated in any way with the phrase "Project
Gutenberg"), you agree to comply with all the terms of the Full Project
Gutenberg-tm License (available with this file or online at
https://gutenberg.org/license).
Section 1. General Terms of Use and Redistributing Project Gutenberg-tm
electronic works
1.A. By reading or using any part of this Project Gutenberg-tm
electronic work, you indicate that you have read, understand, agree to
and accept all the terms of this license and intellectual property
(trademark/copyright) agreement. If you do not agree to abide by all
the terms of this agreement, you must cease using and return or destroy
all copies of Project Gutenberg-tm electronic works in your possession.
If you paid a fee for obtaining a copy of or access to a Project
Gutenberg-tm electronic work and you do not agree to be bound by the
terms of this agreement, you may obtain a refund from the person or
entity to whom you paid the fee as set forth in paragraph 1.E.8.
1.B. "Project Gutenberg" is a registered trademark. It may only be
used on or associated in any way with an electronic work by people who
agree to be bound by the terms of this agreement. There are a few
things that you can do with most Project Gutenberg-tm electronic works
even without complying with the full terms of this agreement. See
paragraph 1.C below. There are a lot of things you can do with Project
Gutenberg-tm electronic works if you follow the terms of this agreement
and help preserve free future access to Project Gutenberg-tm electronic
works. See paragraph 1.E below.
1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation"
or PGLAF), owns a compilation copyright in the collection of Project
Gutenberg-tm electronic works. Nearly all the individual works in the
collection are in the public domain in the United States. If an
individual work is in the public domain in the United States and you are
located in the United States, we do not claim a right to prevent you from
copying, distributing, performing, displaying or creating derivative
works based on the work as long as all references to Project Gutenberg
are removed. Of course, we hope that you will support the Project
Gutenberg-tm mission of promoting free access to electronic works by
freely sharing Project Gutenberg-tm works in compliance with the terms of
this agreement for keeping the Project Gutenberg-tm name associated with
the work. You can easily comply with the terms of this agreement by
keeping this work in the same format with its attached full Project
Gutenberg-tm License when you share it without charge with others.
1.D. The copyright laws of the place where you are located also govern
what you can do with this work. Copyright laws in most countries are in
a constant state of change. If you are outside the United States, check
the laws of your country in addition to the terms of this agreement
before downloading, copying, displaying, performing, distributing or
creating derivative works based on this work or any other Project
Gutenberg-tm work. The Foundation makes no representations concerning
the copyright status of any work in any country outside the United
States.
1.E. Unless you have removed all references to Project Gutenberg:
1.E.1. The following sentence, with active links to, or other immediate
access to, the full Project Gutenberg-tm License must appear prominently
whenever any copy of a Project Gutenberg-tm work (any work on which the
phrase "Project Gutenberg" appears, or with which the phrase "Project
Gutenberg" is associated) is accessed, displayed, performed, viewed,
copied or distributed:
This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org
1.E.2. If an individual Project Gutenberg-tm electronic work is derived
from the public domain (does not contain a notice indicating that it is
posted with permission of the copyright holder), the work can be copied
and distributed to anyone in the United States without paying any fees
or charges. If you are redistributing or providing access to a work
with the phrase "Project Gutenberg" associated with or appearing on the
work, you must comply either with the requirements of paragraphs 1.E.1
through 1.E.7 or obtain permission for the use of the work and the
Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or
1.E.9.
1.E.3. If an individual Project Gutenberg-tm electronic work is posted
with the permission of the copyright holder, your use and distribution
must comply with both paragraphs 1.E.1 through 1.E.7 and any additional
terms imposed by the copyright holder. Additional terms will be linked
to the Project Gutenberg-tm License for all works posted with the
permission of the copyright holder found at the beginning of this work.
1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm
License terms from this work, or any files containing a part of this
work or any other work associated with Project Gutenberg-tm.
1.E.5. Do not copy, display, perform, distribute or redistribute this
electronic work, or any part of this electronic work, without
prominently displaying the sentence set forth in paragraph 1.E.1 with
active links or immediate access to the full terms of the Project
Gutenberg-tm License.
1.E.6. You may convert to and distribute this work in any binary,
compressed, marked up, nonproprietary or proprietary form, including any
word processing or hypertext form. However, if you provide access to or
distribute copies of a Project Gutenberg-tm work in a format other than
"Plain Vanilla ASCII" or other format used in the official version
posted on the official Project Gutenberg-tm web site (www.gutenberg.org),
you must, at no additional cost, fee or expense to the user, provide a
copy, a means of exporting a copy, or a means of obtaining a copy upon
request, of the work in its original "Plain Vanilla ASCII" or other
form. Any alternate format must include the full Project Gutenberg-tm
License as specified in paragraph 1.E.1.
1.E.7. Do not charge a fee for access to, viewing, displaying,
performing, copying or distributing any Project Gutenberg-tm works
unless you comply with paragraph 1.E.8 or 1.E.9.
1.E.8. You may charge a reasonable fee for copies of or providing
access to or distributing Project Gutenberg-tm electronic works provided
that
- You pay a royalty fee of 20% of the gross profits you derive from
the use of Project Gutenberg-tm works calculated using the method
you already use to calculate your applicable taxes. The fee is
owed to the owner of the Project Gutenberg-tm trademark, but he
has agreed to donate royalties under this paragraph to the
Project Gutenberg Literary Archive Foundation. Royalty payments
must be paid within 60 days following each date on which you
prepare (or are legally required to prepare) your periodic tax
returns. Royalty payments should be clearly marked as such and
sent to the Project Gutenberg Literary Archive Foundation at the
address specified in Section 4, "Information about donations to
the Project Gutenberg Literary Archive Foundation."
- You provide a full refund of any money paid by a user who notifies
you in writing (or by e-mail) within 30 days of receipt that s/he
does not agree to the terms of the full Project Gutenberg-tm
License. You must require such a user to return or
destroy all copies of the works possessed in a physical medium
and discontinue all use of and all access to other copies of
Project Gutenberg-tm works.
- You provide, in accordance with paragraph 1.F.3, a full refund of any
money paid for a work or a replacement copy, if a defect in the
electronic work is discovered and reported to you within 90 days
of receipt of the work.
- You comply with all other terms of this agreement for free
distribution of Project Gutenberg-tm works.
1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm
electronic work or group of works on different terms than are set
forth in this agreement, you must obtain permission in writing from
both the Project Gutenberg Literary Archive Foundation and Michael
Hart, the owner of the Project Gutenberg-tm trademark. Contact the
Foundation as set forth in Section 3 below.
1.F.
1.F.1. Project Gutenberg volunteers and employees expend considerable
effort to identify, do copyright research on, transcribe and proofread
public domain works in creating the Project Gutenberg-tm
collection. Despite these efforts, Project Gutenberg-tm electronic
works, and the medium on which they may be stored, may contain
"Defects," such as, but not limited to, incomplete, inaccurate or
corrupt data, transcription errors, a copyright or other intellectual
property infringement, a defective or damaged disk or other medium, a
computer virus, or computer codes that damage or cannot be read by
your equipment.
1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right
of Replacement or Refund" described in paragraph 1.F.3, the Project
Gutenberg Literary Archive Foundation, the owner of the Project
Gutenberg-tm trademark, and any other party distributing a Project
Gutenberg-tm electronic work under this agreement, disclaim all
liability to you for damages, costs and expenses, including legal
fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE
TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGE.
1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
defect in this electronic work within 90 days of receiving it, you can
receive a refund of the money (if any) you paid for it by sending a
written explanation to the person you received the work from. If you
received the work on a physical medium, you must return the medium with
your written explanation. The person or entity that provided you with
the defective work may elect to provide a replacement copy in lieu of a
refund. If you received the work electronically, the person or entity
providing it to you may choose to give you a second opportunity to
receive the work electronically in lieu of a refund. If the second copy
is also defective, you may demand a refund in writing without further
opportunities to fix the problem.
1.F.4. Except for the limited right of replacement or refund set forth
in paragraph 1.F.3, this work is provided to you 'AS-IS' WITH NO OTHER
WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE.
1.F.5. Some states do not allow disclaimers of certain implied
warranties or the exclusion or limitation of certain types of damages.
If any disclaimer or limitation set forth in this agreement violates the
law of the state applicable to this agreement, the agreement shall be
interpreted to make the maximum disclaimer or limitation permitted by
the applicable state law. The invalidity or unenforceability of any
provision of this agreement shall not void the remaining provisions.
1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
trademark owner, any agent or employee of the Foundation, anyone
providing copies of Project Gutenberg-tm electronic works in accordance
with this agreement, and any volunteers associated with the production,
promotion and distribution of Project Gutenberg-tm electronic works,
harmless from all liability, costs and expenses, including legal fees,
that arise directly or indirectly from any of the following which you do
or cause to occur: (a) distribution of this or any Project Gutenberg-tm
work, (b) alteration, modification, or additions or deletions to any
Project Gutenberg-tm work, and (c) any Defect you cause.
Section 2. Information about the Mission of Project Gutenberg-tm
Project Gutenberg-tm is synonymous with the free distribution of
electronic works in formats readable by the widest variety of computers
including obsolete, old, middle-aged and new computers. It exists
because of the efforts of hundreds of volunteers and donations from
people in all walks of life.
Volunteers and financial support to provide volunteers with the
assistance they need are critical to reaching Project Gutenberg-tm's
goals and ensuring that the Project Gutenberg-tm collection will
remain freely available for generations to come. In 2001, the Project
Gutenberg Literary Archive Foundation was created to provide a secure
and permanent future for Project Gutenberg-tm and future generations.
To learn more about the Project Gutenberg Literary Archive Foundation
and how your efforts and donations can help, see Sections 3 and 4
and the Foundation web page at https://www.pglaf.org.
Section 3. Information about the Project Gutenberg Literary Archive
Foundation
The Project Gutenberg Literary Archive Foundation is a non profit
501(c)(3) educational corporation organized under the laws of the
state of Mississippi and granted tax exempt status by the Internal
Revenue Service. The Foundation's EIN or federal tax identification
number is 64-6221541. Its 501(c)(3) letter is posted at
https://pglaf.org/fundraising. Contributions to the Project Gutenberg
Literary Archive Foundation are tax deductible to the full extent
permitted by U.S. federal laws and your state's laws.
The Foundation's principal office is located at 4557 Melan Dr. S.
Fairbanks, AK, 99712., but its volunteers and employees are scattered
throughout numerous locations. Its business office is located at
809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email
[email protected]. Email contact links and up to date contact
information can be found at the Foundation's web site and official
page at https://pglaf.org
For additional contact information:
Dr. Gregory B. Newby
Chief Executive and Director
[email protected]
Section 4. Information about Donations to the Project Gutenberg
Literary Archive Foundation
Project Gutenberg-tm depends upon and cannot survive without wide
spread public support and donations to carry out its mission of
increasing the number of public domain and licensed works that can be
freely distributed in machine readable form accessible by the widest
array of equipment including outdated equipment. Many small donations
($1 to $5,000) are particularly important to maintaining tax exempt
status with the IRS.
The Foundation is committed to complying with the laws regulating
charities and charitable donations in all 50 states of the United
States. Compliance requirements are not uniform and it takes a
considerable effort, much paperwork and many fees to meet and keep up
with these requirements. We do not solicit donations in locations
where we have not received written confirmation of compliance. To
SEND DONATIONS or determine the status of compliance for any
particular state visit https://pglaf.org
While we cannot and do not solicit contributions from states where we
have not met the solicitation requirements, we know of no prohibition
against accepting unsolicited donations from donors in such states who
approach us with offers to donate.
International donations are gratefully accepted, but we cannot make
any statements concerning tax treatment of donations received from
outside the United States. U.S. laws alone swamp our small staff.
Please check the Project Gutenberg Web pages for current donation
methods and addresses. Donations are accepted in a number of other
ways including including checks, online payments and credit card
donations. To donate, please visit: https://pglaf.org/donate
Section 5. General Information About Project Gutenberg-tm electronic
works.
Professor Michael S. Hart was the originator of the Project Gutenberg-tm
concept of a library of electronic works that could be freely shared
with anyone. For thirty years, he produced and distributed Project
Gutenberg-tm eBooks with only a loose network of volunteer support.
Project Gutenberg-tm eBooks are often created from several printed
editions, all of which are confirmed as Public Domain in the U.S.
unless a copyright notice is included. Thus, we do not necessarily
keep eBooks in compliance with any particular paper edition.
Most people start at our Web site which has the main PG search facility:
https://www.gutenberg.org
This Web site includes information about Project Gutenberg-tm,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.
A New Genus of Pennsylvanian Fish (Crossopterygii, Coelacanthiformes) from Kansas
by
Echols, Joan
Download Formats:
Excerpt
The Project Gutenberg EBook of A New Genus of Pennsylvania Fish
(Crossoperygii, Coelacanthiformes) from Kansas, by Joan Echols
This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org
Title: A New Genus of Pennsylvania Fish (Crossoperygii, Coelacanthiformes) from Kansas
Read the Full Text
— End of A New Genus of Pennsylvanian Fish (Crossopterygii, Coelacanthiformes) from Kansas —
Book Information
- Title
- A New Genus of Pennsylvanian Fish (Crossopterygii, Coelacanthiformes) from Kansas
- Author(s)
- Echols, Joan
- Language
- English
- Type
- Text
- Release Date
- August 28, 2010
- Word Count
- 10,492 words
- Library of Congress Classification
- QE; QH
- Bookshelves
- Animal, Animals-Wild, Browsing: Nature/Gardening/Animals, Browsing: Science - Genetics/Biology/Evolution
- Rights
- Public domain in the USA.